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Abstract. Formal expressions are derived for the multipole expansion of the structure functions of a general
polarization observable of exclusive electrodisintegration of the deuteron using a longitudinally polarized
beam and/or an oriented target. This allows one to exhibit explicitly the angular dependence of the
structure functions by expanding them in terms of the small rotation matrices d? , (6), whose coeflicients
are given in terms of the electromagnetic multipole matrix elements. Furthermore, explicit expressions
for the coefficients of the angular distributions of the differential cross-section including multipoles up to

Lmax = 3 are listed in tabular form.

PACS. 13.40.-f Electromagnetic processes and properties — 21.45.4+v Few-body systems — 25.30.Fj Inelastic

electron scattering to continuum

1 Introduction

The special and fundamental role of the two-nucleon sys-
tem is well recognized. It plays the same role in nuclear
physics as the hydrogen atom in atomic physics and is
underlined first of all by the fact that N N-scattering is
of crucial importance for fitting realistic N N-potential
models. Secondly, the deuteron constitutes the simplest
nucleus. It is very weakly bound and allows an exact the-
oretical treatment, at least in the nonrelativistic regime.

Over the past decade we have made a systematic study
of inclusive and exclusive deuteron electrodisintegration
with special emphasis on polarization observables [1-6].
The main purpose of this study was to reveal to what ex-
tent the use of polarized electrons, polarized targets and
polarization analysis of the outgoing nucleons will allow a
considerably more thorough and more detailed investiga-
tion of the dynamical features of the two-nucleon system
than is possible without the use of polarization degrees of
freedom (d.o.f.).

With the present work we continue the study of the
formal aspects of this reaction presented in [3,6]. In [3] we
have formally derived all possible polarization structure
functions as an extension to previous work in photodisin-
tegration [7,8]. In view of the large number of observables,
we have addressed the question of independent observables
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in a more general sense in [5] considering a two-body reac-
tion of the type a+b — c+d, for which we have derived a
general criterion for the selection of a complete set of in-
dependent observables. Subsequently it has been applied
in [6] to the electromagnetic deuteron break-up reaction
which can be considered as a two-body reaction in the
one-photon-exchange approximation.

It is the aim of the present work to derive the multipole
expansion of the observables of this reaction, which allows
one to represent any observable as an expansion in terms
of the small rotation matrices d’,,.(0), whose coefficients
are determined uniquely by the electromagnetic transition
multipole matrix elements between the deuteron ground
state and the various partial waves of the outgoing two-
nucleon scattering state. Our approach is based on ear-
lier work in deuteron photodisintegration [7] in which the
multipole expansions of the unpolarized differential cross-
section and of the outgoing-nucleon polarization without
target orientation of [9,10] have been generalized to all
possible polarization observables. Analogous techniques
have been applied in [11] for the description of polarization
effects in (v, N)-reactions on nuclei and in [12] for polar-
ization observables in coincidence electron scattering from
nuclei. In [11] only photon polarization degrees of freedom
and outgoing-nucleon polarization is considered without
including effects from target polarization, whereas in [12]
the latter are treated, too. In particular, in [12] detailed
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expressions are given for the differential cross-section of
deuteron electrodisintegration including beam and target
polarization and for one-nucleon recoil polarization with-
out target orientation.

A multipole decomposition will be very useful for a de-
tailed comparison between theory and experiment. Past
experience in deuteron photodisintegration has shown
that a study of the multipole decomposition of angular dis-
tributions often helps ascertain the reasons for any serious
discrepancy between theory and experiment. However, one
should keep in mind that such an analysis is managable
only if the multipole expansion converges rapidly so that
not too many multipoles contribute significantly. This is
certainly true for photodisintegration at low and medium
energies, say up to the A-resonance region, but not for
electrodisintegration in general, because for energies and
momentum transfers along the quasifree ridge, the mul-
tipole expansion converges slowly. But this is the region
where the influence of final-state interactions (fsi) is min-
imal and thus this is not the best region for testing the
N N-interaction. Away from the quasifree ridge the mul-
tipole series converges quite rapidly, at least below the
ridge, for example at a final-state c.m. energy of 120 MeV
and g2 < 2 fm?, as has been shown in [13]. On the other
hand, this is just the interesting region where fsi and two-
body currents become significant allowing a much more
stringent test of a N N-potential model and its associated
two-body current operator. Thus, a multipole analysis can
become an important tool for a detailed analysis.

First, we will briefly review in the next section the
general structure of an observable and its representation
in terms of a bilinear Hermitean form in the current ma-
trix elements. Starting from the multipole expansion of
the current, we then derive in sect. 3 formal expressions
for the coefficients of the expansion of an observable in
terms of the small rotation matrices d’ , (6). Some ex-
plicit expressions are collected in two appendices.

2 General form of an observable

We will begin with a brief review of the general formalism
for an observable in e +d — ¢’ +n + p as derived in de-
tail in [3]. A different approach has been used in [14] but
there is a one-to-one correspondence between the observ-
ables of [14] and ours as shown in detail in the appendix A
of [6]. In the one-photon-exchange approximation, the
most general form of an observable “X” in d(e,e’N)N
and d(e, e’np) is given by

O(2x) = 3c(kP®, k2P tr(TT02x Tp;) (1)
where .
(K, ki) = 2 @)

= o gl
with a denoting the fine structure constant and ¢2 the

four-momentum transfer squared (¢ = k; — ko). Here, Ky

and ks denote the momenta of incoming and scattered
electron, respectively.
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Fig. 1. Geometry of exclusive electron-deuteron scattering
with polarized electrons and an oriented deuteron target. The
relative np-momentum, denoted by p.p, is characterized by the
angles 0 = 0, and ¢ = ¢np, where the deuteron orientation
axis, denoted by cf, is specified by the angles 64 and ¢g4.

The scattering geometry is illustrated in fig. 1, in which
we distinguish three different planes which all intersect in
one line as defined by the momentum transfer ¢, namely,
the scattering plane, the reaction plane, and the orienta-
tion plane containing the axis of orientation of a polarized
deuteron. The principal frames of reference are associated
with the scattering plane, namely, the laboratory frame
and the c.m. frame of the final two nucleons, which is re-
lated to the former one by a boost along ¢. The z-axis is
chosen along ¢ and the y-axis in the direction of k1 X ko
and hence perpendicular to the scattering plane, and the
z-axis such as to form a right-handed system. With re-
spect to the c.m. frame, we will denote throughout this
paper by 8 and ¢ the spherical angles of the relative mo-
mentum py, = (p°™, 0, ¢). Thus, the spherical angles of
proton and neutron momenta in this frame are 6™ = 6,
o™ = ¢ and O™ =7 — 0, o™ = ¢+ 7 (see fig. 1).
The final hadronic state is furthermore characterized by
the excitation energy e,,. Finally, 84 and ¢4 denote the
spherical angles of the deuteron orientation axis.

The T-matrix in (1) is related to the current matrix el-
ement between the initial deuteron state and the final np-
scattering state. Characterizing the initial deuteron state
by its spin projection my on ¢ and taking as spin degrees
of the final state the total spin s and my its projection on
the relative np-momentum p,,;, in the final np-c.m. system,
one obtains for the T-matrix between the initial deuteron
state |mg) and the final np-scattering state |sm)

Ton, ama(0:6) = =200 oy 50 BG™ [ My

x(sms|Ja(@)ma) =

ei()\+md)¢tsms Amg (0) )

where E¢™ =, /M? 4 p2  and Eg™ =/M7 + ¢? denote

the nucleon and deuteron c.m. energies, respectively. We
would like to remark that the choice of the coupled-spin
representation of the T-matrix is not essential. One could
as well take the uncoupled-spin representation T x, xm,,
where A, /,, denote the spin projections of the proton and
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the neutron on the relative momentum, respectively. It is
related to the coupled-spin representation by a Clebsch-
Gordan coefficient

1.1
T)\p)\n)\nbd = Z (5/\1,5/\n|5m5) TST)'LS>\77Ld . (4)

smg

The structure functions describing any observable do not
depend on the choice of representation, only their formal
appearance in terms of T-matrix elements will be different
in the different representations.

Each observable X is represented by a pair X = (o’ )
with o/, a = 0,...,3 referring either to no polarization
analysis of the outgoing nucleons (o, @ = 0) or to their
polarization components (¢/, & = 1,2,3), and 2x is an
associated operator in the spin space of each of the two
nucleons. In detail, if no polarization analysis of the out-
going nucleons is performed, one has

21 = Q00 = 12(p) ® 12(n), (5)

and if the polarization component x; of the proton or the
neutron, respectively, is measured,

20 = 02,(p) ®12(n) or
20; =12(p) ®0y,(n), (1=1,2,3). (6)

Finally, the polarization components z;(p) and z;(n) of
both particles are represented by

Qij = Ox; (p) & Og; (Tl) . (7)

The resulting observables are listed in table 1 and are
divided into two sets, called A and B, according to their
behaviour under a parity transformation [8].

Since the T-matrix of this reaction is calculated in the
np-c.m. system, the spin operators refer to the same ref-
erence frame. In the Madison convention the polarization
components of the outgoing particles refer to a frame of
reference, for which the z-axis is taken along the particle
momentum, i.e., in the reaction plane, the y-axis along
q X pj, i.e., perpendicular to the reaction plane, and the
x-axis is then determined by the requirement to form a
right-handed system. However, one should keep in mind
that the spin operators of both particles refer to the same
coordinate system with z-axis parallel to p,, and y-axis
along ¢ X Ppp, i.e., perpendicular to the reaction plane.
Thus, the polarization components of the proton are cho-
sen according to the Madison convention while for the
neutron the y- and z-components of its polarization have
to be reversed in order to comply with this convention.

Furthermore, in order to account for a possible target
orientation, the initial-state density matrix in (1) com-
prises besides the density matrix of the exchanged virtual
photon the deuteron density matrix p?, which we take in
the form

1 _ ~(1 1 I
d 1-m
Prmgma’ = _(_) dZI< r_ M)
dmgq \/g ) my mqy
x Pfle=™MP4d} 4 (0a) , (8)
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where P§ = 1. We use throughout the notation I =
V2I 4+ 1. In (8) we have assumed that the deuteron den-
sity matrix is diagonal with respect to an axis d which
is called the orientation axis. Therefore, the deuteron tar-
get is characterized by four parameters, namely the vector
and tensor polarizations P{! and Py, respectively, and by
the orientation angles 6; and ¢4 describing the direction
of the orientation axis d of the polarized deuteron tar-
get with respect to the coordinate system associated with
the scattering plane (see fig. 1). Note that the deuteron
density matrix undergoes no change in the transformation
from the laboratory to the c.m. system, since the boost to
the c.m. system is collinear with the deuteron quantization
axis [15].

Any observable X in d(e,e’N)N and d(e, e'np) can be
represented in terms of structure functions fé’)IMi(X )
(a € {L,T,LT,TT}) and is given by

1

2
O(2x) = clki™, k™) > PF S { (s (X)

=0 M=o
+or FAM(X) + prrfiF T (X) cos ¢

S T
+prr fEYT(X) cos 2(;5) cos (Md) —oF 5)
- (pLTf£¥_ (X)sing + prrfia—(X)sin 2¢>)
" 5_sxT
X sin <M¢ 67 2)
+h[ (P M (X) + Pl 1 (X) cos )
. T sxT
X sin <M¢ 07 2)
. - ex T
o (X) sin g cos (M6 — 57 T )| Jdhro(0a)
(9)
where d’ , (6) denotes the small d-function of the rotation
matrices [16], and ¢ = ¢ — ¢g.

In particular, one obtains for X = (00) the unpolarized
cross-section as

So = b, K5
x(prfr + prfr + prr frr cos ¢ + prr frr cos2¢) ,(10)

using as a shorthand f, = f%9%(1). One should remember
that the nucleon angles and polarization components refer
to the c.m. frame.

The kinematic factors of the virtual photon density
matrix p, and p/, are given by the well-known expressions
(note Q? = —¢% > 0)

2
pr=PQ5, pr=3Q%(1+5).
pPLT = ﬁQQ% \/ %7 pTrT = —QQE—C, (11)
Pir =587 €, P =3Q%\/<E
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Table 1. Notation for the Cartesian components of the spin observables and their division into sets A and B.

Observable 1

Tp Yp Zp Tn Yn Zn
Set A B A B B A B
Observable  xp%n  ZpYn TpZn  YpTn  YpYn YpZn  ZpTn ZpYn  ZpZn
Set A B A B A B A B A
with Explicitly one has for the U’s
‘(jlab| Q2 ) alab
= = - e NAIM Al A T
8= 7 §=—0mp 5 ¢ = tan ( 5 ) ,  (12) Uy =2 Z (=) 73 75Ty
(q ) T'v'TY
where 3 expresses the boost from the laboratory system - o &2 T S
to the frame in which the hadronic current is evaluated XSa Z(i) Vv —o
and ¢° denotes the momentum transfer in this frame. S -
The explicit form of the structure functions in (9) has 737
been derived in [3] and is given by « Z ¥3d11, wsse (17)
2 N !’
LI,M(X) — 7%6 (Zéfug)(OIM) , (13&) s’s Sl s
1+0mp0
IM 4 5 IM with
. 11
PUX) = T Re (PTUM) L (13D)
+ M,0 s'sSo _j\/g _ 1—m+s/—m’s 1 1 1
UNAIM = Z (=) m' —m M
IM:i:( ) _ 4 m/msm’'m
Lr 1+0mp0 S

«Re [Z-Sj‘ (ug)(llM + (_)1r+1\/1+<sxBZ/{;?I*MI)}7 (13¢)

_ 2
1+ 6m0

X%e[iS;‘<u§1uMi<_)I+M+ax,BU;{MFM)}(13d)

IM+

T (X)

4 5X
1 IM _ 14555 1IM
7 (X)) 1+5M70§Re (2 Ux ), (13e)
4
1 IM=E
X)= -
vr - (X) 1460

X%e[iuéf(u%uMi(7)I+M+6X,BU?(M-M)} . (13f)
Here 67 is defined by

1,for X € B
0,for X e Af>
(14)
distinguishing the two sets of observables A and B. In
the foregoing expressions, the U’s are given as bilinear
Hermitean forms in the reaction matrix elements, i.e., for

X =(da)
S

u)\//\IM _
o « -
s'm.m/smsmg

5;( = (§X,B — (;],1)2, with 5X,B = {

A

i), (15)

where the irreducible spin operators 7] with respect to
the deuteron spin space are defined by their irreducible
matrix elements

(1r)1) = V31,

X (s (P () 510, Y A (]

(I=0,1,2). (16)

!
s s .
x (m’s —m —0) b xrm L xm

and s]” transforms the spherical components of the

spi t [7]
pin operators oy,

(18)

(t = 0,1) to Cartesian ones o,. It is

given by
e = (@) 77 () (5u,;(a) + &) 5u,—a(a)) : (19)
with
1, fora=0,3
é(a) =002 —0a1, ¢la)=1< .—a- ,
(@) 2 5 () 7Zﬁlafora:1,2
0, fora =0, 3
T(a)=1—13640, via) =< ’ )
(@) 0 7(a) {1, for o =1, 2}
(20)
For later purpose we note the following properties:
(2) = (s, s = (s, (2D)
and
(=)7sa = () 00syr (=) = () e POy
(22)
The U transforms under complex conjugation as
(22 = (MU (23)

Note that f29-(X), f20=(X) and f19*(X) vanish
identically. For this reason we use the notation f,(X),
(X)) and f2°(X) instead of fO9+(X), f1°7(X) and
29%(X), respectively.
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Table 2. Listing of the matrix Uljw

l s p=1 2 3 4
j—1 1 cose; 0 —sineg; O
J 0 0 1 0 0
j+1 1 sing; 0 COS € 0
J 1 0 0 0 1

The structure functions f(') M) (X) contain the com-
plete information on the dynamical properties of the NNV
system available in deuteron electrodisintegration. They
are functions of 6, the relative np-energy €np and the three-
momentum transfer squared (¢7¢™)2. Both the np-energy
np and (™ )% are taken in the c.m. system.

Finally, we would like to remark that for real photons
only the transverse-structure functions contribute. The
corresponding photoabsorption cross-section is obtained
from (1) by the replacements c(k}*", k2*P) — 1/3 and

Prr — 0,

1 pY
pTT—>—§Pl >

prT — 0,
hp’T — %Pg’,

L — 0,
. (24)
PT — 35

where P and P denote the degree of linear and circular
photon polarization, respectively.

3 Multipole expansion

In order to have a convenient parametrization of the an-
gular behaviour of the structure functions it is useful
to expand them in terms of the small rotation matrices
d’ ... (0). This will also facilitate the analysis of the con-
tributions of the various electric and magnetic transition
multipole moments to the different structure functions. It
is achieved with the help of the multipole expansion for
the t-matrix. We take the outgoing np-state in the form
of the Blatt-Biedenharn convention [17]

Z i(l05m5|jms)

pjm;l

|p's ms>(7) =

xe LU, D (R) lpgmy), (25

where 5{; denotes the hadronic-phase shift, and the matrix

Uj, 18 determined by the mixing parameters ¢; as listed in
table 2. Furthermore, R rotates the chosen quantization
axis into the direction of the relative mp-momentum p.
Here, the partial waves

Z U/s/u

s’

lgmy) p(l's") )img) (26)

are the solutions of a system of coupled equations of N N-
scattering. Strictly speaking, such a representation is valid
only for energies below the pion production threshold, be-
cause above this threshold the np-channel is coupled to the
N Nr-channel. However, if one is not interested in the pi-
onic channels, one can project them out at the price that
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the phase shifts become complex, where the imaginary
parts describe the inelasticities. A further consequence is
that the radial functions, which were real below the pion
threshold, become complex too.

Although an uncoupled representation like the helicity
basis [18] is preferred in high-energy reactions, we have
purposely chosen the coupled representation because N N-
scattering data like phase shifts and mixing parameters,
to which all modern high-precision N N-potentials are fit-
ted, are based on it. These potentials are constructed in
order to describe N N-scattering data at low and medium
energies to a high degree of accuracy and thus it is quite
natural to make this choice for the multipole analysis in
order to provide a more stringent comparison between the-
ory and experiment and thus a finer test of these high-
precision potentials. In addition, we would like to remark
that even though the coupled-spin representation origi-
nally was introduced for a nonrelativistic description, it
still can be maintained in the case that leading-order rel-
ativistic contributions are included. Furthermore, we will
briefly show in appendix A, where we give the multipole
expansion for an uncoupled representation (valid also for
a fully covariant description), that one can still introduce
formally a (Is)-representation.

In the convention (25), the multipole expansion of the
t-matrix reads

i .
tsms)\md \/1+5)\0 Z = 1mdL)‘|jm])
Lljm]uj
XUOwanW%)OLAUHJ@d%,ni9)=
1+md+mhm Z L+l+slj
Lijm;p
1 L ] l s j L) . j
[oma k2 ) (G 30 ) O ls) 0,
(27)
with
O™ (ujls) = Varx ehU},  NE(uj), (28)
and

NE () = 8. (B () +AME (1) ) +05,0C" (1), (29)

where E*(uj), M*(uj) and CF(uj) denote the reduced
electric, magnetic and charge multipole matrix elements,
respectively, between the deuteron state and a final-state
partial wave |uj) in the Blatt-Biedenharn parametriza-
tion. If the time reversal invariance holds, these matrix
elements can be made real by a proper phase convention
for energies below the pion production threshold. This is
not possible above this threshold. Parity conservation im-
plies the selection rules

(C/E) (i) =0, =1, (30a)

M*(uj) =0,  for (=) =1, (30b)

which with (—)#+7+l = 1 leads to the relation

O A (ujls) = (=)* T O™ (ugls) .

for (f)LHJ”‘

(31)
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In order to obtain the multipole expansion of the quan-
tities UMMM in (17), we generalize the approach in pho-
todisintegration [7] to include also the charge contribu-
tions. Thus, we will start with the multipole expansion
of u555%,(0). Inserting the multipole expansion of the
t-matrix of (27) into (18) one first obtains a rather com-

plicated expression

s'sSa

w5 =1 \/3(1 +6x,0)(1+ 6x0)

s —m, (11 T s s S
1—-m+s" —mj
x Z (=) L (m’ -m M) (m/s —ms 0)

mimsm’m

_ L/+l/+sl+m’s+m’i/ A 1L j/
X Z ( ) J m/ )\l —m'4

L/llj/m;_MI '7
Y j/ LI _ .
X <0 m, _mls) @ (W'g'l's")" dfn;m; (0)
A 1L gj
L+l4+s+ms+m7 4 J
% Z (=) ¥ (m A —m]-)
Lijm;p

l s j . ,
X(oms_£%>OLVMﬂ®d%WMW), (32)

which, however, can be simplified considerably with the
help of the Clebsch-Gordan series of the d’ , -functions

By 0) iy, (0) =

. .
\ms—m; -2 J ] K
(-) J;K (m; —msms—m;)

i K K
) (m'j —mj my — m}) o5 =, (0)

and a sum rule for 3j-symbols yielding

Z s s S Il s j
ml, —mgs —o ) \0ms —m;

mimsg
y l/ S/ j, j/ j K _
0m, —m. ) \m, —m; —o

o s (S K K
N\ +s'+Hi+K 12
s (55

K’
/
<K’ll’> S KK

i1
000 ;j,y

S () (s )

’ ’
m].mjm m

1 Ll jl j/ ] K B
N N =t )\l —my k) T
J J J
1+L +j+ K+ M+X 59 J I K
(=) EJ:J (/\—/\’M—n>

-/

(UL T %
N oA A= N

~

i K
LJy, (35)
11
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where kK = A — X 4+ M. Then (32) can be written in the
form

s'sSoa s'sSo,
ul 57 (0) = Z “A/MMKdﬁ('—A—M,o(G) ) (36)
K

where the coefficients are given in terms of the e.m. mul-
tipole moments

/ 1 ’ 7
ui/i\S}%K _ = (_)s +s+o Z CA AIM,K(L/]-/L]»)

2 —
L'j'Lj
o (S K K' i (KL
DK (a_ao 2 M 00
K’ 'l
SKKY
% s ] l OL)\ (u/j/l/s/)*OLA(ujZS), (37)

S/ jl l/

with

CA,)\IM,K(LIj/Lj) —
(V2314 63 0) (1 + 620) 7 IT K

o( J I K
XXJ:J (A—A’MX—A—M)
/ JiK
><<L L7 ) UL
1

N AA— N ] (38)

The latter coefficients possess the symmetry properties

C—A'—)JM,K(LIJ-/LJ') —

(=)L ALATHE oNA=M K (175D 5Y - (39a)
CX)JM,K(L]'L’]") =
()N AT CANT=M K (P gy - (39D)

The coefficients (37) vanish obviously for K < |A'—A—M].
Furthermore, for a given K, according to the 9j-symbol
in (38), only those multipoles L’ and L contribute to (37)
which fulfil the conditions |L' — L| < K + I and L' +
L > |K — I| simultaneously. On the other hand, limiting
the multipoles to L', L < Lyax, the coefficients vanish for
K > 2L+ 1.

Furthermore, one finds easily for the coefficients
s'sSo, K

Uy, yyp  the symmetry properties
s'sSo, K I+S , s'sS—o, K
uZ N = () UnraT—M (40a)
s'sSo, K\x __ s'+s+N =\ ss'S—o, K __
(uxirar )= (=) UNNT—M
I+S+s"+s+N =\ ss'So, K
(-) u’ "% > (40b)

which follow directly from (31), (37) and (39).
Finally, with the help of (17) and (37) one obtains the

coefficients for the multipole expansion of Mi‘,’ f‘f M,

NN M Z NAM, Kk K
Ua/a - Z/{a/a d/\/_)\_M’K(e).

K,k€ERX

(41)
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Table 3. Listing of the sets kx determining the summation values x in the multipole expansion (51) of a structure function

for an observable X = (o/a).
o |0 3 0 3|1 0 2 3 1 3 2|1 2 1 2
« 0O 0 3 3|0 1 O 13 2 3|1 1 2 2
| ] {11} | {202

The sets xkx of the possible k-values are listed in table 3
and the coefficients are given by

UA’)JM, Kr _
> O L) @y (L L) (42)
L'j'Lj
where
Q)\’A,KK(L/ ,Lj) _
> DER(GS jls) OV N (W §US) OFA (ujls), (43)
p'l's’ pls
with
D (il jls) = (=)' T 118 5
N
T+TAATV TV &2 (T T
XZ( 78tV s ZS (V/V_K> 337
T'v' Ty S s's S
S K K' K1l S KK
ZKQ(/@—/{ O)(O 00) s g1 - (44)
K’ S/ j/ l/

Similar expressions have been obtained by Raskin and
Donnelly [12] for two cases: i) differential cross-section
with beam and target polarization, and ii) polarization
of one outgoing nucleon without consideration of target
polarization (see egs. (2.94) and (2.95) of [12]). Our result
is a generalization to all polarization observables. Further-
more, our expressions are slightly different in their formal
appearance, because we have separated explicitly the de-
pendence on the target orientation angles from the angular
dependence of the outgoing nucleons according to (9).
We would like to point out that the factorization in
(42) is a manifestation of two ingredients. Firstly, angular-
momentum selection rules (Wigner-Eckart theorem) and
coupling schemes connected with the e.m. multipoles are
contained in the coefficient CY MK ([/4/[,5). This part
is independent of the choice of the representation for the
partial waves with good total angular momentum and
also independent of the type of observable (o/,a). On

the other hand, the second factor 92:3 Kr(L/§'Lj) re-
flects the structure of the spin operators of the final-state
polarization as evaluated between the final-state partial
waves, and thus depends on their representation. The
(2-coefficients for an uncoupled representation are given
in appendix A.

The D-coeflicients have as symmetry properties under
interchange j'l’s’ < jls and under complex conjugation

DKI{(]ZS] Us /) _
1)
()7 I DE S8 jls)
DS j1s) =
’ (0) (1)
(_)l +l+K+6(ul,a)+§(a/,a) Dg,‘; (j/l/s/jls) , (45b)
(DSE(1s!j1s))* =
(2
(- DI

(45a)

('I's'jls) , (45¢)
which follow straightforwardly using (22). Here, we have
introduced as a shorthand

5@)

(a/,c) = 5()4’,i + 6a,i . (46)

With the help of (28), one can write )2 in a more
compact form:

(2)

’
YNNIML KR g8

o o

Z CX)\IM,K(L/]-/LJ.)

L'Lp'j" g

x DES (W5 1) NE*(1'§") NE (ng) - (47)

where NAL(M]) incorporates the phase shift for conve-
nience, i.e. N&(uj) = e NJ(uj), and

5@
Oar a)Z DER (18! jls) U

U's!
U's'ls

UJ

DES (15 1) = T

48
One should note the angular-momentum condi‘(cior)l
=il <K <j+j.

Equation (47) is our central result. It allows one to or-
ganize the presentation of the coefficients of the multipole
expansion in a very efficient way, because the dependen-
cies on the initial state polarization d.o.f. (virtual-photon
polarization and target) and on the multipolarities, con-
tained in CN MM K (L/5' L), separate from the dependen-
cies on the observable and the final-state quantum number
1, contained in DK“ 5 ug).

With the help of the symmetries of (39) and (45) one
easily finds for D the following symmetry properties:

+5

(o a) el @)

K+p'+5' +p+5+6)
DE (W j'pg) = (=)

x DX ('3 nj) (492)
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Table 4. Listing of the values of 8(a) in the multipole expan-
sion (51).

a« L/T LT TT
Ba) 0 12

BES (') = (=) 40 DEZ% (4 ') = (49b)
(=)0 BER (1) (49c)
(DK5( 7)) = PSR T'wd) (49d)

The symmetries of (39b) and (49b) allow one to derive a
simple relation for the &/ under complex conjugation:

/ * €] ©)
(u)\ M, Kn) = (- )/\ +A+6 R TIIN L{/\’\ I-M,K—r

o « (af'e)

(50)
(23) using (~)" =
(ot (see table 3). From (50) follows that

is real or imaginary for )\ A, M = 0 and

50 45
k = 0, depending on whether (—)"(@".©)""(a".2) is equal to

1 or —1, respectively.

This relatlon follows also directly from
s 45

(o)

10, K
UAAO 0

Finally, one obtains the general expansion of a struc-
ture function in terms of the dm n functions, which are
related to the Jacobian polynomials in general, but for

m’ = 0 or m = 0 to the associated Legendre functions [19]

OIS (X) = 3T pIME.Ee gk (6)

K,k€Erx
(51)
where ((a) is listed in table 4, and the coefficients
f,gl) IM(i)’K'{(X) are obtained via (13) from the forego-
ing multipole expansion (41). One should remember that
an observable X is represented by (o/«). Defining

CIM K(L/ ’Lj) 1f§MOCOOIM,K(L/j/Lj)
32v3 .. .
= ml K (=) T
1+d0mp0 T

K
JI KEN(LJ\ |7,
X(OM—M)(O 00) WL (52a)

167

~IM, K
Crm WL =

CllIM,K(L/j/Lj)

32v3 .. R
___veve IKQ_LA/A 2
T ono " (73> T
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167
1+dmp0

% (COHM, K(L’j’Lj) + (_)I+M00117M,K(L/j/Lj))

32v6 . 0. .
_ _wevE _LJIJZJQ
J

L (b ) 2o ()
L
1

A IM=E, K
C’LT (Ll 'L )

/ i K
<% ’ ‘1]) vLJy, (52¢)
1117
87

CIJW:N: K L/ /L

TT ( Jj) = 71+5M0

X(C—llIM,K(L/j/Lj) + (_)I+MC—111—M,K(L/j/Lj))
1

— 767\/5 A’j ZJ2

1+5M7O

JI K (T T K
X[(ZM—M—2>i() <2—MM—2>]
/ Jj i K
x(fl_Ll‘zj) 'L J
111

one obtains in detail for the longitudinal- and transverse-
structure functions

: (52d)

0= Y0 ML)
L' j' Lpg
xDES (1’ W)§R€< 40 G ’j’)éL(uj)) 7
(53a)
P = >0 et L)
L' 3" Lpg
~K sC N
x DK (1] W)§R6< I+ NE* (s 'J’)Nf(uj)),
(53b)
== 3 ML)
L' j’' Ly
(2) ~
xDES (15 1j) S (6’ oo NE* (u ’j’)NlL(uj)),
(53c)

and for the interference ones, distinguishing observables
of type A

IM+, Kk
(X) =

pie Z CIMi K L/j/Lj)

L'y j’' L
DKH g% ‘51 +5Ea @) NL * ! - NL .
XD (15 11j) Re (1'3") Ny () )
(54a)
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£¥i,KH(X): Z CIM:I: K(L’]’Lj)
L'w'j' L
K 5 * N T .
x DX (' uj)%e( Il G (g ’J’)Nf(w)),
(54b)
LITMi,KN(X) _ Z CIM:I: K(L/j Lj)
L' j’'Lpg
K 5X 453 Nl N .
< DES (15 1j) S ( P O ’J')Nf(uy)),
(54c)
and observables of type B
,JI«],}/[i’KH(X): Z 57{¥I¥7K(L/j/Lj)
L' j’'Lpg
K SX 453 Wl NS .
<DL (1 uJ)?Re< T NE (u ’J’)Nf(w)),
(55a)
+, Kk -~ s . .
X)) = Y el (L)
L' j’' Ly
K 5X 450 * ~ .
<DL (1 MJ)§R€< PO G (4 ’)Nf(m))7
(55b)
B = Y )
L'w'j' Ly
~NKk Tsl -\ Cx 5 +5( ~L'* 7 -\ nrL .
XDy (W' m)dm( @he) CF 7 (p'5") Ny (w))-
(55¢)

With this we will conclude the present work. In ap-
pendix B we list more explicit expressions for the unpo-
larized differential cross-section. Furthermore, we have es-
tablished a “mathematica” program, which allows one to
evaluate explicitly the coefficients C and D for any ob-
servable up to a given maximal multipolarity L.y from
which one can obtain the explicit contributions of the var-
ious multipole moments to a specific coefficient of the ex-
pansions (53) through (55) As an example we list in ap-
pendix C the coefficients C up to Lypax = 3 and D for the
differential cross-section up to jyax = 4. Upon request the
authors will provide these coefficients for other observables
and multipolarities.

This work is supported by the Deutsche Forschungsgemein-
schaft (SFB 443) and by the National Science and Engineering
Research Council of Canada.
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Appendix A. Multipole expansion for an
uncoupled representation

We start from the scattering-wave analogous to (25) in
the uncoupled representation [18]

\/—ZJImeJ,A M) Dy, (R)

Jm;

(A.1)
where Ay, = Ap + Ay, and [pjm;; Ay A,) denotes a partial
wave with good angular momentum j and projection m;
on the photon momentum. It is defined by [18]

72 An) () =

4 73/2

|pj myg;3 )‘p/\n> =

< [ At D3 s, (@8.7) R 0 M) oy
(A.2)

where R,g, denotes the rotation operator through the
Euler angles (a, 3,7). Then the multipole expansion of
the t-matrix reads

= (=T

X Y (INGLALmy ) OM (A Aa) e, (6)=

L]mJ

(7)1+>\ /1+5>\70 Z (7

L]mJ

1L j LA
(Ad)\ m]>o (J)\)‘)dmA

ExpAning (0)

(0),
(A.3)
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with
OF (1A An) =V 31311 (B (ApAa) FAME (70\0))

+x0CE (ApAn)] (A4)
where EL(jA\\n), ME(jA\,) and CE(jA,\,,) denote the
reduced electric, magnetic and charge multipole matrix
elements, respectively, between the deuteron state and
the final-state partial wave |p j m;; ApA,). Evaluating with
this form of the t-matrix
WA — 3

AL N ApAn Ad

x(Aloa(m)Andtaaons (Al i (A (A5)
one finds again (41) with the coefficient of the form (42).
However, the explicit form of (22,2’ Kr(L/5'Lj) is now

given by
Doy (LT Lg) = ()Y
T'Vv' TV

SENERE
i A VA ) \=AL v A

i i K NP . .
X (X Y _ﬁ) OF X (NN OF (A An) -
y4 n
(A.6)

This result is quite general and is also valid for a covari-
ant description. The further evaluation will depend on the
specific properties of the partial waves of good angular
momentum chosen in a given dynamical approach.

For example, if one introduces the [s-representation
according to [18] by

ti;x;xx; <>\;|‘7a/(17)|>‘p>

Al A
TTSTV TV

. 1 ~(1 1
Ip(ls)jmj) = = Z l (—)\p—)\ns)\pn>
7 2 72
ApAn A
X (105A[j) [p 5 ApAn) (A7)
yielding by inversion
) 1 11
[pjmj; ApAn) = 3 %:l <§Ap§)\n|s)\pn>
X(10sApn|jApn) [p (Is)jmy; ), (A.8)
and
O (A n) Zl ( )\ns)\pn>
X (lOS)\pn| FApn) OF(jls) (A.9)

one recovers an expression analogous to the one in (43),
1.€.
> Dl

Q/\ N Kkr L/]/Lj
l's'ls

XoL’/\l (jll/sl)* OL)\(]ZS) ,
where DK (j'1's'jls) is given in (44).

" (58 jls)

(A.10)
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Appendix B. Multipole expansion of the
form factors and structure functions of the
differential cross-section

In order to obtain more explicit expressions for the multi-
pole expansion of the structure functions of the differential
cross-section

FOTME) Z FOIME), K dI—(M—ﬁ(a),O(G) , (B.1)

K

using a simplified notation since in this case x = 0 and
thus is left out, we specialize (53) and (54) to X = (d/a) =
(00) and find

1 ’ ’ -/ .
FIME : 3 (<_)L '+ 1) ((_)L+u+a + 1)
L' 3’ Ly
xCL M (L L) Dae (5 1)

xRe (iéméy*(u’j’) éL(uj)) : (B.2a)
f%AI,K _ Z gj{AI,K(L/j/Lj) 55{)00/]-/'“]-)
L'w'j' Ly
xe (%00 NE“ (') NE(ug)) - (B2D)
1
ij%u,K _ ! Z (( )L 45 i 1)CIM K(L/ L)
L'’ Lsj
<D (15 115) §Re(i‘”'l(ﬁ'*(u'j’) Nf(uj)) :
(B.2¢)
'ZI“JQ\“JZbK _ Z CIM K L/ /L])'DK()(,[L/j//Lj)
L'w'j' Ly
xe (1% N2 (1) NE () (B.2d)
}IMK _ Z 57{M7K(L/j/L]>
L'w' 5’ L
<D (15 113) Sm (i1 NE (') NE (1) )
(B.2e)
1
iéMi,K:77 (( )L 45 Jr1)CIM K(L/ ’Lj)
L'w§' Luj
XD ') Sm (i CE (') N (1g) )
(B.2f)
where
~ S )7’ i (K11
Doy’ (w5 j) = 2) PBCORA (0 )
U'ls
) v
i p v, @)

Note that we have included the selection rule (30) for the
Coulomb matrix elements and that the tilde over the mul-
tipole matrix elements indicates the incorporation of the

. i
hadronic-phase factor e,
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Now we specialize further in order to obtain the an-
gular coefficients for the unpolarized differential cross-
section

So = c(ki™, kE*) > ({pof( +prf1| dio(0)

K
+prr [l d%10(0) cos ¢ + prr [ d250(0) cos 2¢) ;
(B.4)
by setting I = M = 0 in (B.2) and evaluating

CYOK(L/5'Lj) in (52) with

CA’AOO,K(L/j/Lj) _ (_)A+L’+L+j+1

><2\/3(1+5,\’,0)(1+5>\,0)K2j/j
« L' L K i i K
N == LL1("
00, K

Writing for simplicity ff/T and fé’%j(TT instead of f, T

(B.5)

and f g)T(/)(;;’ K, respectively, one obtains

(_)L’+L+j A5

[ =—4nK? 73

L'w'j' Lpg
LK\ [§jK
*\ooo/) L1
« ((_)Lq—#q—j/ n 1) ((_)L+u+j + 1)
<D (15 1g) Re (CH* (') CF (1) )
(B.6a)

K =167 K?

S (o)F

L' j'Lpg

L' LK\ [j i K\ =Ko, 1 .
x (1 I 0) {jL [ }Dééo(u’fw)

xte (N (7) NE (1)) (B.6b)
fI{{T = 16\/§7TK2 Z (_)L’+L+j j/j
L'w'j' Lyg
(YLK
0-11 LIL 1
(T PR G )
e (2 (') N ) (8.6

K. =167 K?

S (G

L'’ 3" Lpg

L' L K 7 K = g

x <_1 -1 2> {JL []/ 1 }D(I)g(](lﬁ,]/#])
xRe (NE7 (') NE()) -

Finally, we will give the explicit multipole decomposi-
tion of the various inclusive form factors. The form factors

(B.6d)
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can be obtained from the (K = 0)-coefficients of (B.2) ac-
cording to

_ 7T _
Fé/)l M _ (_)IJrM (1 +6M,0) _( NIM+,0 _ fé/)IM ,O) )

3 a
(B.7)
Using
~NOO/, /1, » 1
Doo (W'5'1g) = 2—j5u',u 0575 » (B.8)
and

C)\/)\IM, O(L/j,L_]) _
5705 a0 (<) 2171 [3(1 4+ 6y 0)(1+ 63.0)

(E LT L'LI
N =AA=N]\115("

one finds for K = 0 from (47)

(B.9)

Upg MM = (<P by a3 (1463,0) (140 )

x> (=) (i 5 )\’I)\>

L' Lpj

LI I\ oy vris o .
X{l 1 j}e 2P NS (1g)* NK (1) (B.10)

One should note that in the foregoing equation the real
part of the hadronic phases of the final states has disap-
peared because the multipole transitions L’ and L lead to
the same state |uj), whereas the inelasticity, denoted by
pf” remains.

Formally one finds nonvanishing contributions for

M = N =\ only, ie, fi5, FOITIEO o 1 = 1,2,

f/Tm’O and f%fi’o. According to (B.2), they are the real
or imaginary parts of products of multipole matrix ele-
ments. As already mentioned, in the case of time reversal
invariance, these matrix elements can be made real by
a proper choice of phase convention below the pion pro-
duction threshold. Therefore, those contributions involv-
ing the imaginary part vanish below the pion production
threshold. This refers to fér}li’o and fﬁr_li’o. If, how-
ever, one considers the np-channel above the pion thresh-
old without explicit consideration of the N Nm-channels
in a coupled-channel approach including isobar degrees of
freedom with complex propagators, the multipole matrix
elements cannot all be made real. In this case, the latter
two form factors become nonvanishing [1]. Whether this
is an artefact of such an approach is an open question.
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Now we will list the multipole expansion of those form
factors of d(e,e’)np, which are nonvanishing below pion
threshold. They have already been reported before in [1].
The unpolarized form factors are given by

—2p],

1672 e
F _ L -\ 12
L= §2L+1IC ()7,

(B.11a)

1672 e~ 2Pk
F =
r 3 > 2L +1

Ljp

< (1B (u)? + [M*(ug)]?)

(B.11b)

the vector polarization form factors by

) /
it =3202V2 > (-) <% _Ll i)

LL'jn

/ . ,
X{Ll f}} RelC ()" NE (1),

(L L1
FF0 =167 > (=) <1 _1 o)

LL'ju

(B.11c)

/ P ,
X{li f;}e_% Re[N{ (1j)* NY (uj)], (B.11d)

and finally the tensor polarization form factors

F20 _ 16772\/§ Z (—) (%)l S 8)

LL jp
’ . !
[ LD i iy
10 (L
F£T1=32”2@ 2 (=Y (ﬁ 5 %>
LL'jp
I j !
X {L1 f?}e% Re[CF ()" N{ (1),
. /
FX = 16#2\/§ Z (=) <Ii —Ll (2))
LL'jp
’ . ’
NI I —
5 (T
rz -3 3 0 (4 43)
LL'jp

/ X ,
X{L1 f‘?}ezpﬁ Re[NLy (1g) " Ni (7). (B.12d)

(B.12a)

(B.12b)

(B.12¢)

Above the pion threshold, the following additional form
factors appear in d(e, ¢')np as has already been mentioned
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above.
_ (L' L 1
Fipt=-32r°V2 Y (=) (o - 1)
LL'jp

11

_ 10 (L' L 2
e DI (A

LL'ju

L'L1] _9, N )
A5 T e sl (i) Nl (B130)

L'L2] _o,i N .
X{ 11 j}e 22 Im[CY (ug)* NY (ug)] . (B.13D)

We would like to emphasize that if one considers the com-
pletely inclusive process d(e, e’) X, the corresponding addi-
tional form factors will vanish as long as the time reversal
invariance holds.

Appendix C. Listing of the coefficients C up
to L.ax = 3 and D for the unpolarized
differential cross-section up to jn.x = 4

As an example, we list here the coefficients C and D for the
unpolarized differential cross-section. First we will con-
sider the coeflicients C which simplify considerably for the
case of no target polarization, i.e., I =0 and M = 0, and
obtain

CYOM(L'5'Lj) = 16w (—) K+ +!

g (G50 {TaT) e
Cp (L' Lj) = 16m (=) HE

L (O R B

)
grmo (L L K K
XJ'JKQ(O -1 1> {JL i 1}’ (C.1c)
Crp " (U'j'Lj) = 16w (=) +H+)
gmo (L L K K
x7 j K> (_1 I 2) {JL i 1} . (C.1q)
For K = 0, the only nonvanishing coefficients are

500,0 gy J
Cryr (L'3'Lj) =167 52 05 011

(C.2)
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Table 5. C)°*(L'j'Lj) for Lmax = 3 and jmax = 4.

(L'j'Lj)  Ci (L'j'Lj)  Cu (L'j'Lj)  Ci (L'j'Lj)  Ci (L'j'Lj)  Ci

K=0

1010 16 7 0101 1637 1111 18 2121 6. /3r 1212 /5m

3 V3 5 3

(2222) L (3232) B5m (2323) ERVAE (3333) Vi (3434) Lo
K=1

(0110) —167 (2110) 164/2m (1101)  —16+/37 (2111)  —8,/¢n (1201) 165w

(1221) —-£V2m (2211) 24,/27 (3221) ST (2212)  —8,/¢rx (3222) —164/om

(2312)  &V42x (2332)  —123nw (3322) 324/ (3323)  —164/=m (3423) 2*,/inx
K=2

(1111) 84/~ (2101) 1637 (2121)  —84/%nx (1210) —28V10w  (3210) 164/2~«

(1211)  —8/10= (2201)  —16+/57 (2221)  —-8V2~w (3211)  —164/27  (1212) —%70~w

(2222)  —8,/Y¥x (3212 L5 (3232) % ./%x  (2301) 1677 (2321) —164/=m

3311 164/ 7 2322 32 r 3312 —164/2 7 3332 -5 /107 2323) —64,/=7
7 V7 7 7 35
3333 -8,/ L 3412 8 /157 3432) —i8,/10 . 3433 —40 /55 3434) —49 /55
7 7 7 21 7 3 7 7
K=3
1221 8 /Tr 2211 164/ L 3201 1657 3221 -2 .27 2212 164/ 7
5 5 5 5
(3222) Em (2310)  —164/Lim (2311)  —164/2 7  (3301) —16V7m (3321) =8/«
(2312) V42w (2332) AT (3322)  —8,/1nw (3323)  164/; 7™ (3401) 48

3421 —8+/2x 3422 —84/L 7 3423) —16+/%7
15

K=4
2222) —96,/2 7 3212 —% .\ /57x 3232 48 /10 o 2321 44 /6 o 3311 24.,/87
35 7 7 7 5 7

7 77

\/E
7
(2322)  48,/%n (3312) 24,/¥x (3332) 2V5r (2323) 2/ En (3333) 24,/Zn7
(3410)  —32/2x  (3411) -—24/2x  (3412) -2/330mr  (3432) 12, /L8x  (3433) Z2,/¥g

7 7 11

(3434) 218, /20

K=5

(2332) —-%./Zx  (3322) -—164/B7  (3323) -—16,/37  (3421) 16/ %~ (3422) 164/ 7

21
(3423) B\ /2w
Kf

=6
(3333)  40,/2x (3432) 160 /55 (3433) —40,/8 7  (3434) -2, /%g
7 33 33
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Table 6. C2"* (L'j'Lj) for Lmax = 3.

(L'5'Lj) Cr (L'5'Lj) Cr (L''Lj)  Cr (L'j'Lj)  Cr (L'j'Lj)  Cr
K=0
(1010) 67 (1111) BT (2121)  £3nx (1212) 857 (2222) AT
(3232) L5 (2323) 8T (3333) % 7 (3434) Lr
K=1
(2110) 8y/Em (2111)  -124/2x (1221) —2V6n (2211) 12 \/577 (3221) B \/Ex
(2212) —124/2 7 (3222) 32,/ (2312) 2 V1drm (2332) —2./27  (3322) o

(3323) =32,/ 7  (3423) L. /¢x

K=2
(1111) -4/ P (2121)  —4,/¢nx (1210)  $V10w (3210)  164/2m (1211) 4+/107
(2221) —427 (3211)  —164/307  (1212) 570~ (2222) —4/¥x  (3212) &,/ ¥x
(3232) —%,/8x (2321) -8,/2n (3311) 324/ m (2322) -E7 (3312) —164/29 7

(3332)  —2V10w  (2323) —32,/2m  (3333) —6./2w  (3412) V10w (3432) —2,/%x

(3433) —22V157  (3434) -30,/% g

7 7 7
K=3
(1221)  —28\21x  (2211) -164/Lw  (3221) —8q7 (2212)  —164 /3w (3222) 8y/2m
(2310) 164/ (2311)  164/1w (3321) —4./I~x (2312) L V1dr (2332) L./2x
(3322)  —4/Lw (3323) 84/ (3421)  —m (3422)  —4,/2nx (3423) =8/«
K=4
(2222) 644/ =7 (3212) 2V30m (3232) &,/¥nx (2321) - /87 (3311) -Zm

(2322) —-32,/2n (3312)  —124/27  (3332) SVhm (2323) —2/Z71  (3333) 4,/&nw

(3410) 24,/2m (3411) 124/ 8nx (3412) 2657 (3432) 2. /g (3433)  2,/307x

(3434) 38, /%7

(2332) B\ /4w (3322) 8,/ r (3323) 8,/ m (3421) —16/H 7 (3422) -8,/ 2n«

(3423) -3, /%bx

K =6

(3333) —30,/32x  (3432) 40, /1% (3433) 104/®x (3434) 2, /8B g

7 11
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(L'j'Lj) Crr

éVLT

91
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Table 8. C29: % (L'j'Lj) for Lmax = 3.
(L'5'Lj) Crr (L'§'Lj)  Crr (L'j'Lj)  Crr (L'5'Lj) Crr (L'5'Lyj) Crr
K=2
5
(1111)  —4+/57 (2121) ”T;f (1210) 8\/§7r (3210) g = (1211) 4157
(2221) 437 (3211) -2 \/f” (1212) 4/%7 (2222) 4,/ 8n (3212) ByvEx
15, 10, 5.
(3232) 2V (2321)  8,/27  (3311) % (2322)  8/Sn (3312)  —2VF
(3332) 8Vl (2323)  48,/27  (3333) 6,/07  (3412) Bvibn (3432) Svim
. 104/330 7
(3433)  10vi0x (3434) T
K=3
(1221)  —8y/Yx  (2211) VMmoo (3221) 4 \/én (2212)  —16¥7r (3222)  —437
(2310) 8V (2311)  167x (3321)  V4A27 (2312)  16,/Z 7  (2332) -2
(3322) Vidrw (3323)  —2/14m  (3421) V6T (3422) 5v2m (3423) 2227
K=4
(2222) ¥z (3212) 003 x (3232) —2°% (2321)  —48/Z< 7  (3311) —9,/Ynx
(2322) —16/37  (3312) —15,/8m (3332) —102m  (2323) 16, /7  (3333) -8/«
(3410) 12/« (3411) 15,/6x  (3412) 1Em  (3437) 1PVEmT (3433 _12Varr
72 65 o
(3434) VLT
K=5
(2332)  4,/rw (3322)  4+/11xw (3323)  44/11xw (3421)  —4/% 7 (3422) —4V1Inx
(3423) -4,/ q
K=6
(3333)  —64/B 7 (3432) 40,/Lnx  (3433) 2\/%Ex  (3434) 10,/Znx
Limiting the multipolarity to Ly.x = 3 and thus 0 < and in particular for K =0
K < 6 because K < 2 L.y, the nonvanishing coeffi- )
cients for K > 0 are listed in tables 5 to 8. One should DO i) = § ) Sy C.4
note that C2% X (L'j'Lj) = 0 for L' + L + K =odd, and 00 (17" H7) = 0w 055 55 (C.4)

CX KL Lj) = 0 for L' = L and K =odd. In view of
the symmetry relations in (39) we list for CEO’K(L’j’Lj)7
CTOO’K(L’j’Lj) and CQQ%K(L’j’Lj) only the values for j <
j" and for j = j’ only the ones for L < L’. The other can
be obtained from (39).

For the differential cross-section ((o’«) = (00)), the
coefficients D become quite simple. From (48) one gets

/

— i ik
D’ (W'5'nj) = % <5w,p G2 (=) HIHE <JO J 0)
S (VT KN (55 K\ .y ,
— Y Ui <0 0 {z 7 1} Ul U{LM), (C.3)
Ul

The remaining nonvanishing coefficients D are listed in
tables 9 to 16 for j < 5/ < 4 and for 1 < K < 8, because
for a given maximal multipolarity Lax the maximum j-
value iS Jmax = Lmax + 1 and K < 2 jax. In these tables,
we have already made use of the selection rules contained
in the 3j-symbols in (C.3). This means that a coefficient
vanishes if j' +j+ K =odd for ' = p=2,4and ¢/, p €
{1,3}, and furthermore if j' + j + K =even for p/ = 1,3
and 1 = 4 and vice versa. For j = j' only the coefficients
for ;1 < ' are listed because of (49). Again the coefficients
with j > j’ follow from the listed ones using (49).

These tables allow one to determine explicitly the con-
tributions of the various multipole moments to the coeffi-
cients of the expansion of the structure functions in terms
of the d¥, (6)-functions.
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Table 9. Dol (15 117) for jmax = 4.

12 /385

('3 1) D (W' 1g) D
— Ccos € 2 sine 1
(1130) —cosetV2sine (2120) s
(3130) V2 cose61+sin €1 (1211) 10 cos ey coseg+siner (6—0\/5 cos e2+6 /3 sines)
—10 cos € sin €1 +4cos e (7\/5 cos ea+6 /3 sine ) 1
(1231) 2 sineytoose (- 2 2 (2221) -+
(3211) 61/3 cos ep sin 61+<71060COS €1+V2 siney) siney (3231) 10 sin €1 sin eg+cos 616(3\/5 cos e3+V/2 sine3)
1 21 /2 cos ey cos ez+sin e (7\/5 cos €e3+30 sineg)
(4241) i (1312) BT ’ .
(1332) —21 /2 coseg sin e2+co;153 (—+/3 cos e3+30 sin e3) (2322) % /%
(3312) 30 cos €3 sineg4(—21 \é?locos ea+V3 sinea) sineg (3332) 21+/2 sineg sin 63+CO;;(2) (30 cos e34+/3 sinez)
18 v/3 coses coseq+sines (—coses+14+/5 sine
(4342) \ o5 (1413) 3 coseq 2§2< 4 4)
—18 /3 cos ey sin eg+cos e (— cos eg+14 /5 sine 1
(1433) 4 sin ez beoses ( 4 4l (2423) v
(3413) 14 /5 cos eq sin €3+(—;§2\/§ cos eg+sin eg) sin eyq (3433) 18 v/3 sin e3 sin e4+c0;5e§ (14 /5 cos e4+sin eyq)
1 5
(4443) i\ o1
Table 10. D&Y (1§ 17) for jmax = 4.
(W' 1g) D (13" 17) D
__siney (=4 cos e1+V2 siney) 1
1111 — (2121 L
_ —4cos2e1+V2sin2e; __cosey (/2 cos ey +4 siney)
3111 Svis (3131 Wit
1 7(\/5 cos 62)+\/§ sin €g
4141 5V (1230 10
—15V24+V2 605252+4\/§ sin 2 eg 1
1212 20 V35 (2220 PV
1 V3 cos es+V2 sin e
2222 - (3230 V3 cosep i3 siney
4105 cos2ep—V/70 sin2e 15242 cos2ea+4 V3 sin2e
3212 cos 150 S (3232 — 40\/2;—5 2
1 715 cos e cos e3+V10 siney (—(v/3 cos e3)+9 sine3)
4242 — = (1311 1 coseg+vI0 siney 2 2
—7+/15 cos ez sine; —v/10 cos €1 (\/§ cos e3—9 sineg) —49v3+V3 cos2e3412 sin2e3
210 168 v/35
1./3 _ 1
2\ 35 V105
91/10 cos e3 sine; +v/15 (=7 cose;++v/2 siney) sines 7 /15 sin €1 sin e34+1/10 coseq (9 cos e3+/3 sine3)
210 210
_—12 0052634—\/3 sin 2 €3 _ 49 V343 cos2e3+12 sin2e3
168 V35 168 V35
1 1 3
V70 1V 35
27 cos eg cos e4+1/6 sin e (— cos e4+5 /5 siney) _ 27 coseyq sin e2+1/6 cos e (coseg—5+/5 sin €q4)
90 V7 90 V7
—111 V545 cos 24420 sin2ey 1
360 V77 V70
_1 /5 51/30 cos €4 sin eg+(—27 cos eo+V/6 sin en) sin ey
3\ 77 90 V7
27 sin ey sin eg+v6 cos e (55 cos eq+sineq) _ —20 cos2e4+V5 sin2ey
90 V7 360 /77
111545 cos2€4+20 sin2eq 1
360 V77 221
17
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Table 11. DY (15 1) for jmax = 4.
Il N Il N
(W' 1) D (W5 1) D
(1211) 9 cos e sin €1+\/§(53((:)0\s/;172 V2 sine;) sin ey (1231) —5+/3 sin €] sin 52+c:(3);51\f7(9 cos e2—2/6 siney)
(2221) _% /% (3211) 5+/3 cos e cos 52—51;1051/(72 V6 cos ea+9 sin €3)
_5 /3 cos eg sin e14cos ey (216 cos ea+9 sin en) 1
(3231) 307 (4241) 23
(1330) —+/3 cosez+2 sineg 14 (1312) 2 sin eg (43 cosez—15 sin63)+4\2/g cos eg (—18 cos e3+5 V3 sine3)
(1332) cos €2 (8 V/3 cos e3—30 sin 53)2\2/05 sines (18 cose3—5 V3 sines) (2320) : 1ﬁ
(2322) 1105 (3330) 2 cos egﬁl»;/g sin €3
V2 cos ep (53 cos e3+18 sine3)—2 sinep (15 cos e3+4 V3 sin e3) V2 sinea (53 cos e3+18 sine3)+2 cosen (15 cos ez +4 V3 sineg)
(3312) 120 (3332) — 120
1 6 coseq cos E4+\/§ sin ey (— cos e4+2 /5 sine
(1342) ~3vam (1) : 5 e N
(1431) 6 coseq sin €1+V2 coseg (coseg—2/5 siney) (1413) 9 sin ez (cos €4 —2/5 sineq)+2 13 cos ez (—11 cos e4+/5 siney)
1221 126 /22
9 cos ez (coseq—2+/5 sineg)—2+/3 sinez (=11 cos e4++/5 sineq) 1
(1433) 126 Va2 (2421) 377
1 21/10 cos ey sine;+(—6 cose1+1/2 siney) siney
(2423) Tt (3411) 1221
3431) 6 sine] sineg+1/2 cos ey (25 cos eq+sin €4) (3413) —9 sin e3 (215 cos e4+sin €4)+2 V3 cos eg (\/5 cos eq+11 sineyq)
( 1221 126 v/22
o 9 coses (2 \/5 cos €4+sin €4)+2 \/3 sin e3 (\/3 coseg+11 siney) 1 5
(3433) — 126 /22 (4441) s\ 12
1 5
(4443) —351\/ 162
Table 12. D (15 1) for jmax = 4.
BT ~ BT ~
('3 ng) D ('3 1) D
. 2 .
sinex® _ sin2ep 1
(1212) 3v70 V105 (2222) Ve
__cos2ep sin 2 eg cos 622 sin 2 eg
(3212) V105 + 670 (3232) 370 + V105
(4242) 7% /?25 (1311) 18 /2 cos e3 sin 51+\/§(124;2(:os €1 —5/2 sin €1) sineg
—14 /3 sine; sin e34cos ey (18 V2 cos e3—5 /6 sin e3) _ —49+5 cos2e3420V/3 sin2eg
(1331) S (1313) 841154
1 1
(2321) 3V (2323) V151
(3311) 14 /3 cos ey cos ez —+/2 s;];;l (53 cos e3+18 sinez) (3331) —14+/3 cos e3 sine; —v/2 525261 (53 cos e3+18 sine3z)
5(—4+3 cos2e3+sin2e3 ) 4945 cos 2 e3+203 sin2e3
(3313) 84 /154 (3333) 84 /154
1 1
(4341) W (4343) 6 /154
(1430) —2 cos 641+8\/5 sin eyq
6 /231 sinea (5 cos e4—4 /5 sineq)+V154 cos en (=55 cos e4+14 /5 sineyq)
(1412) 13860
(1432) V2 sin e (55 cos e4—14 /5 siney)+6 /3 cos eg (5 coseq—4+/5 siney) (1414) _ —274cos2e44+45 sin2ey
180 V77 12 v/2002
1 1 5
(2420) 5 (2422) —3\/ 7%
3 V5 cos e +2 sin e
(2424) e (3430) B TR
—61/3 sin ey (4\/5 cos €4+5 sin 64)+\/§ cos €2 (14\/5 cos €4+55 siney)
(3412) 180 V77
61/3 cos en (4\/5 cos €4+5 sin E4)+\/§ sin eg (14\/5 cos €4+55 siney)
(3432)  — 180 V/77
—4+/5 cos2eq+sin2ey 27+cos2e4+4 V5 sin2ey
(3414) o Ta55 (3434) 12 V2002
1 3
(4442) W (4444) a5




H. Arenhével et al.: General multipole expansion of polarization observables in deuteron electrodisintegration 509

Table 13. D&Y (/5 117) for jmax = 4.

(W' 1g) D (W' 1) D
(1312) —51/66 cos ez sin ey —7 /33 ZZ;EQ sin e3+3 v/22 sin ey siney (1332) 7 /33 sin ey sin egfcos ea ing) V66 cos e3+3 V22 sin e3)
(2322) \/g (3312) —7+/33 cos ey cos 53+\/2_24212n52 (3 cose3+5 V3 sines)
(3332) 7+/33 coseg sin52+\/ﬁzg;ez (3 cosez+5 /3 sinez) (4342) _%\/g
(1411) V10 cos ey sin61+(3é (\:}%617\/5 sine;) sineyq (1431) V2 cos e (V5 cos 63;5;71;64)*3 sine; siney
(1413) 21/3 cos ez (1315 cos eg—28 512n5624\)/~%sin e3 (—5/5 coseq+14 siney)
(1433) —9 cos ez (55 cos eg—14 sin 642)522\/\%;1n e3 (—13 /5 coseq+28 siney)
(2421) —%\/g (2423) \/%
(3411) 3 cosep cos 647\/56511;% (cos e4+V/5 sin eq) (3431) _3coses sin51+\/§go\j% (cos €4+ sineq)
(3413) 9 sine3 (14 cos e4+5 /5 sin 542);22\/\/1%05 €3 (28 cose4+13 V5 siney)
(3433) 9 cos ez (14 cos e4+5 /5 sin 542)54;2\/\{%35&[1 €3 (28 cos e4+13 /5 siney)
(4441) ﬁ (4443) wﬁ
Table 14. DE (15’ 11j) for jmax = 4.
(W' 189) D (W5 113) D
(1313) — eincs (12 coscatyD sincs) (2323) ~ 053
(3313) _5(—12 co;j% sin 2 e3) (3333) —5 cose3 (\1/25\;%“2 sin e3)
(4343) % \/% (1412) _5 Col))sy%ne2 _ 3 co\s/el%s(i)nq + 7 sgn\j%mq
(1432) 3 sn:/eli%n eq | cose (=50 535;%7 V5 sineq) (1414) —57V6+7 \/iGc;i/zl%-«—MO sin2eq
(2422) Wi (2424) *%\/%
(3412) 3 Co\s/elr‘:l_sc(())s ca | sines (7 \/i(;:?;%-s-so sin eq) (3432) 3 Co\s/eli_gsoineg 4 cosea (7 x/ioc?/s%%o sineq)
(3414) _7(=20 co;;oe%/%g sin2ey) (3434) _ 57VB+7 \/532%5\2/%140 sin2eq
(4442) - \/4»%9 (4444) A
Table 15. Dgo (11§ 117) for jmax = 4.
(W' 1) D ('3 1) D
(1413) 7/ cosey sin53+(i38\/\§%se374 sine3) sin ey (1433) cos 3 (7+/5 cos 64*;185\1;‘%)79 V3 sineg siney
(2423) 7% \/% (3413) 94/3 cos €3 cos 647512\5/31%@5 €4+7 V5 siney)
(3433) _ 9+/3 cosey sin 53+clo;f/31%cos €4+7V5 sineq) (4443) %\/47%9
Table 16. D&Y (15’ 11j) for jmax = 4.
('3 1g) D ('3 pg) D
(1414) 7 siney (—21(;%\/3 sineq) (2424) % \/%
(3414) 7(—20 co;j% sin2ey) (3434) 7 cos ey (\/155%20 sin e4)
(4444) *% 12?55




